In vivo viscoelastic properties of the brain in normal pressure hydrocephalus.

نویسندگان

  • Kaspar-Josche Streitberger
  • Edzard Wiener
  • Jan Hoffmann
  • Florian Baptist Freimann
  • Dieter Klatt
  • Jürgen Braun
  • Kui Lin
  • Joyce McLaughlin
  • Christian Sprung
  • Randolf Klingebiel
  • Ingolf Sack
چکیده

Nearly half a century after the first report of normal pressure hydrocephalus (NPH), the pathophysiological cause of the disease still remains unclear. Several theories about the cause and development of NPH emphasize disease-related alterations of the mechanical properties of the brain. MR elastography (MRE) uniquely allows the measurement of viscoelastic constants of the living brain without intervention. In this study, 20 patients (mean age, 69.1 years; nine men, 11 women) with idiopathic (n = 15) and secondary (n = 5) NPH were examined by cerebral multifrequency MRE and compared with 25 healthy volunteers (mean age, 62.1 years; 10 men, 15 women). Viscoelastic constants related to the stiffness (µ) and micromechanical connectivity (α) of brain tissue were derived from the dynamics of storage and loss moduli within the experimentally achieved frequency range of 25-62.5 Hz. In patients with NPH, both storage and loss moduli decreased, corresponding to a softening of brain tissue of about 20% compared with healthy volunteers (p < 0.001). This loss of rigidity was accompanied by a decreasing α parameter (9%, p < 0.001), indicating an alteration in the microstructural connectivity of brain tissue during NPH. This disease-related decrease in viscoelastic constants was even more pronounced in the periventricular region of the brain. The results demonstrate distinct tissue degradation associated with NPH. Further studies are required to investigate the source of mechanical tissue damage as a potential cause of NPH-related ventricular expansions and clinical symptoms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Case and Literature Review of Normal Pressure Hydrocephalus in Mixed Connective Tissue Disease

Normal Pressure hydrocephalus (NPH) is characterized by gait apraxia, urinary incontinence, and dementia. Mixed connective tissue disease (MCTD) is an autoimmune connective tissue disease that has never been reported to cause NPH. Our patient was a 67-year man with a one-year history of gradual worsening gait and balance, urinary urgency with urge incontinence and decreased short-term memory. P...

متن کامل

Comparing the Efficiency of Two Treatment Methods of Hydrocephalus: Shunt Implantation and Endoscopic Third Ventriculostomy

Introduction: Hydrocephalus is one of the most common diseases in children, and its treatment requires brain operation. However, the pathophysiology of the disease is very complicated and still unknown.  Methods: Endoscopic Third Ventriculostomy (ETV) and Ventriculoperitoneal Shunt (VPS) implantation are among the common treatments of hydrocephalus. In this study, Cerebrospinal Fluid (CSF) hyd...

متن کامل

Treatment of Idiopathic Normal Pressure Hydrocephalus by Persian Medicine: A Case Report

Idiopathic normal pressure hydrocephalus (iNPH) is a chronic disease in adults. The standard treatment in this type of hydrocephalus is shunting which is accompanied by some complications and there is also uncertainty about response to treatment. Therefore, surgery is performed in only 10-20% of the cases with iNPH. Currently, oral acetazolamide and repetitive lumbar puncture for drainage of th...

متن کامل

Normal Pressure Hydrocephalus Presentation with a Large Pseudomeningocele

Background and Importance: This interesting case is about the presence of normal pressure hydrocephalus and a large pseudomeningocele at the same time after 13 months of posterior fossa surgery. Although the occurrence of a pseudomeningocele following posterior fossa surgery is not so rare, such a late large pseudomeningocele development with signs and symptoms of NPH after 13 months of surgery...

متن کامل

Evaluating the effect of stenosis increase and pulsatile blood pressure on effective stress distribution in viscoelastic finite element model based on carotid artery ultrasound images

The aim of this study is to evaluate the changes of effective stress distribution in plaque by progressing to the stenosis throat and to assess the pulsatile pulse pressure effect on effective stress of a viscoelastic finite-element model of carotid arteries having less and more than 50% stenosis. In-vivo geometries of the arteries were reconstructed using consecutive transverse ultrasound imag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NMR in biomedicine

دوره 24 4  شماره 

صفحات  -

تاریخ انتشار 2011